two spherical objects have equal masses and experience a gravitational force of 85 n towards one another. their centers are 36 mm apart. determine each of their masses.

Answers

Answer 1

To determine the masses of the two spherical objects, we can use Newton's law of universal gravitation: F = G * (m1 * m2) / r^2

where F is the gravitational force, G is the gravitational constant (6.67430 × 10^-11 N m²/kg²), m1 and m2 are the masses of the objects, and r is the distance between their centers. In this case, the gravitational force is given as 85 N, and the distance between the centers of the objects is 36 mm = 0.036 m. Plugging in the values, we have: 85 N = (6.67430 × 10^-11 N m²/kg²) * (m1 * m2) / (0.036 m)^2. We are told that the two objects have equal masses, so we can let m1 = m2 = m. Simplifying the equation, we have: 85 N = (6.67430 × 10^-11 N m²/kg²) * (m * m) / (0.036 m)^2. Solving for m, we can rearrange the equation: m^2 = (85 N * (0.036 m)^2) / (6.67430 × 10^-11 N m²/kg²). m^2 ≈ 0.0222 kg². Taking the square root of both sides, we get: m ≈ √0.0222 kg. Calculating this expression will give us the approximate mass of each spherical object.

To learn more about masses, https://brainly.com/question/15344770

#SPJ11


Related Questions

A cup filled with water has more _____ than an empty cup.

A. Mass

B. Space

C. Volume

D. Gravity

Answers

Answer:

mass is the correct answer !!?!!! sanoenxcnq j oiin

What is the self-inductance in a coil that experiences a 2.30-V induced emf when the current is changing at a rate of 160 A/s?
A. 3.68E+1 H

B. 160 H

C. 3.31E–2 H

D. 1.44E–2 H

E. 6.96E–1 H

Answers

Answer:

Explanation: I kinda think soo

an auditorium has a volume of 6 103 m3. how many molecules of air are needed to fill the auditorium at one atmosphere and 0c?

Answers

1.66 × [tex]10^{27}[/tex] molecules of air are needed to fill the auditorium at one atmosphere and 0°C.

To calculate the number of air molecules needed to fill the auditorium at one atmosphere and 0°C, we can use the ideal gas law. The ideal gas law equation is given as

PV = nRT

Where:

P is the pressure of the gas (in this case, one atmosphere)

V is the volume of the gas (6 × [tex]10^{3} m^{3}[/tex])

n is the number of moles of gas

R is the ideal gas constant (8.314 J/(mol·K))

T is the temperature of the gas (in this case, 0°C or 273 K)

We can rearrange the ideal gas law equation to solve for the number of moles (n)

n = (PV) / (RT)

Substituting the values into the equation

n = (1 atm * 6 × [tex]10^{3} m^{3}[/tex]) / (8.314 J/(mol·K) * 273 K)

n = 2759.7 mol

Since one mole of any gas contains Avogadro's number (approximately 6.022 × [tex]10^{23}[/tex]) of molecules, we can calculate the number of air molecules in the auditorium

Number of molecules = n * Avogadro's number

Number of molecules = 2759.7 mol * 6.022 × [tex]10^{23}[/tex] molecules/mol

Number of molecules = 1.66 × [tex]10^{27}[/tex]  molecules

Therefore, approximately 1.66 × [tex]10^{27}[/tex] molecules of air are needed to fill the auditorium at one atmosphere and 0°C.

To know more about molecules here

https://brainly.com/question/30337427

#SPJ4

A flat, circular, steel loop of radius 75 cm is at rest in a uniform magnetic field, as shown in an edge-on view in the figure (Figure 1). The field is changing with time, according to B(t)=(1.4T)e^−(0.057s^−1)t.
a) Find the emf induced in the loop as a function of time (assume t is in seconds).
b) When is the induced emf equal to 110 of its initial value?
c) Find the direction of the current induced in the loop, as viewed from above the loop.

Answers

For a flat, circular, steel loop:

a) emf induced in the loop as a function of time is ε = [tex]-N (1.4T)e^{-(0.057s^{-1})} t[/tex]b) induced emf is equal to 110 at 11.7 seconds.c) The direction of the current induced in the loop is clockwise, as viewed from above the loop.

How to determine induced emf?

a) The emf induced in the loop is given by Faraday's law of induction:

ε = -N dΦ/dt

Where:

ε = emf induced in the loop (in volts)

N = number of turns in the loop

Φ = magnetic flux through the loop (in webers)

d/dt = derivative of Φ with respect to time (in webers/second)

The magnetic flux through the loop is given by:

Φ = BA

Where:

B = magnetic field strength (in teslas)

A = area of the loop (in square meters)

The area of the loop is:

A = πr²

Where:

r = radius of the loop (in meters)

Substituting these equations into Faraday's law of induction:

ε = -N d(BA)/dt

ε = -N B dA/dt - N A dB/dt

The area of the loop is constant, so the first term on the right-hand side of the equation is zero. The second term on the right-hand side of the equation is equal to the emf induced in the loop.

Substituting the given values into the equation:

ε = [tex]-N (1.4T)e^{-(0.057s^{-1})} t[/tex]

b) The induced emf is equal to 110 of its initial value when t = ln(110) / 0.057 = 11.7 seconds.

c) The direction of the current induced in the loop is given by Lenz's law. Lenz's law states that the direction of the current induced in a loop is such that it opposes the change in the magnetic flux that produced it. In this case, the magnetic flux is decreasing, so the current will flow in a direction that will increase the magnetic flux. The direction of the current can be found using the right-hand rule. If you point your right thumb in the direction of the decreasing magnetic field, your fingers will curl in the direction of the induced current.

Therefore, the direction of the current induced in the loop is clockwise, as viewed from above the loop.

Find out more on induced emf here: https://brainly.com/question/17329842

#SPJ4

two cars are traveling at the same speed and hit the brakes at the same time. one car has double the deceleration of the other. by what factor does the time required to stop that car compare with that for the other car? question 1 options: it takes half as long to stop. it takes twice as long to stop. they stop at the same time. none of the above.

Answers

The time required to stop that car compare with that for the other car with double the deceleration to stop is twice as long compared to the other car. The correct option is b.

The time required for an object to come to a stop can be calculated using the equation:

t = v / a

where t is the time, v is the initial velocity, and a is the deceleration.

Given that both cars are traveling at the same 5, their initial velocities (v) are the same. However, the car with double the deceleration will have a greater deceleration (a) compared to the other car.

Using the equation, we can compare the times required to stop for both cars:

t1 = v / a (for the car with double deceleration)

t2 = v / (0.5a) (for the other car)

Dividing the two equations, we get:

t1 / t2 = (v / a) / (v / (0.5a)) = 1 / 0.5 = 2

As a result, it takes the car with twice as much deceleration twice as long to stop compared to the other car. The correct option is b.

To know more about deceleration, refer here:

https://brainly.com/question/75351#

#SPJ11


Complete question:
two cars are traveling at the same speed and hit the brakes at the same time. one car has double the deceleration of the other. by what factor does the time required to stop that car compare with that for the other car? question 1 options:

a. it takes half as long to stop.

b. it takes twice as long to stop.

c. they stop at the same time.

d. none of the above

what do koko head, rabbit island, koko crater, and hanauma bay have in common geologically?

Answers

Koko Head, Rabbit Island, Koko Crater, and Hanauma Bay are all geologically related to the Koko Crater Complex, which is a volcanic feature located on the island of Oahu, Hawaii.

They are all part of the same volcanic system and share similar geological origins. The Koko Crater Complex is characterized by tuff cone formations, which are created by explosive volcanic eruptions. These features have been shaped by volcanic activity and erosion over time, resulting in their distinct geological characteristics. The Koko Crater Complex is known for its tuff cone formations, which are created by explosive volcanic eruptions. These geological features have contributed to the unique landscape and characteristics of the area.

To learn more about geologically, https://brainly.com/question/4254238

#SPJ11

Uning the Principle of Time Symmetry. what could you predict about the gravitational force you would experience if you traveled back in time to the age of the Dinosaurs? You would welche less than you do now You would always have the same weight as you do now You would wolph more than you do now Your weight could be calculated using Newton's Universal Law of Gravitation 0 You would love to ww to predict gravitational forces until you arrived on the planet

Answers

If you traveled back in time to the age of the dinosaurs, you would weigh less than you do now. This is because the force of gravity is proportional to the distance between two objects and the mass of the objects. Since the Earth was spinning faster and was smaller during the time of the dinosaurs, the force of gravity was weaker than it is today, resulting in a lower weight for objects on the surface.

The Principle of Time Symmetry states that the laws of physics remain the same regardless of whether time is moving forward or backward. This means that if we were to travel back in time to the age of the Dinosaurs, we could predict what the gravitational force would be using Newton's Universal Law of Gravitation. However, it is important to note that predicting the exact gravitational force would be difficult as it would depend on a number of factors such as the distance from the center of the Earth and the mass of the objects involved. Therefore, we would not be able to accurately predict the gravitational force until we arrived on the planet.

Know more about dinosaurs, here:

https://brainly.com/question/7277813

#SPJ11

what colour will a yellow banana appear to be when illuminated by white light

Answers

Any object that's illuminated by the white light will reflect the same color to our eye, which means the yellow banana will appear yellow.

A bicycle wheel has an initial angular velocity of 1.30rad/s . a) If its angular acceleration is constant and equal to 0.345
rad/s2 , what is its angular velocity at time t = 2.70s ?
b! Through what angle has the wheel turned between time
t=0 and time t = 2.70s ?

Answers

a. The angular velocity at time t = 2.70s is 2.2315 rad/s.

b. The wheel has turned an angle of 4.5042 radians between time t = 0 and time t = 2.70s.

a) To determine the angular velocity at time t = 2.70s, we can use the equation:

ωf = ωi + αt

Given:

Initial angular velocity ωi = 1.30 rad/s

Angular acceleration α = 0.345 rad/s²

Time t = 2.70 s

Substituting the values into the equation, we have:

ωf = 1.30 rad/s + (0.345 rad/s²) × (2.70 s)

ωf = 1.30 rad/s + 0.9315 rad/s

ωf = 2.2315 rad/s

b) To find the angle turned by the wheel between time t = 0 and time t = 2.70s, we can use the equation:

θ = ωit + (1/2)αt²

Given:

Initial angular velocity ωi = 1.30 rad/s

Angular acceleration α = 0.345 rad/s²

Time t = 2.70 s

Substituting the values into the equation, we have:

θ = (1.30 rad/s) × (2.70 s) + (1/2) × (0.345 rad/s²) × (2.70 s)²

θ = 3.51 rad + 0.9942 rad

θ = 4.5042 rad

To know more about angular velocity, here

brainly.com/question/30237820

#SPJ4

Unpolarized light of intensity 20 watts/m2 is incident on a linear polarizer. What is the intensity of the light transmitted by the polarizer?

Answers

The intensity of the light transmitted by the polarizer is 10 watts/m2.

According to Malus’ law, if unpolarized light of intensity I0 is incident on a linear polarizer, the intensity I of the light transmitted by the polarizer is given by; I = I0 cos2θ where θ is the angle between the polarization direction of the incident light and the polarization direction of the polarizer. If unpolarized light of intensity 20 watts/m2 is incident on a linear polarizer, then the intensity of the light transmitted by the polarizer when the angle between the polarization direction of the incident light and the polarization direction of the polarizer is 45° is;I = I0 cos2θ= 20cos245°= 10 watts/m2. Therefore, the intensity of the light transmitted by the polarizer is 10 watts/m2.

According to the law, the square of the cosine of the angle between the polarizer and the direction of the incoming light determines the intensity of the light that passes through it.

Know more about Malus’ law, here:

https://brainly.com/question/30719901

#SPJ11

What is the name of the void spaces left behind in the rock due to degassing of the lava? C) Sediment D) Matrix B) Vesicules E) Groundmass A) Phenocryst

Answers

The name of the void spaces left behind in the rock due to the degassing of the lava is Vesicles. The correct option is option B.

When lava erupts from a volcano, it contains dissolved gases, such as water vapor and carbon dioxide. As the lava reaches the Earth's surface, the decrease in pressure causes these gases to rapidly expand and escape from the lava. This process forms void spaces or cavities within the solidified rock.

These void spaces, known as vesicles, are typically small and can vary in size. They are commonly observed in volcanic rocks, such as basalt or pumice. Vesicles often give the rock a porous or spongy appearance.

Other options mentioned:

Sediment (option C): Sediment refers to particles of solid material that are transported and deposited by various geological processes, but it is not directly related to void spaces in rocks due to degassing of lava.

Matrix (option D): Matrix refers to the material that fills the space between larger grains or crystals in a rock, but it does not specifically describe the void spaces left by degassing.

Groundmass (option E): Groundmass refers to the fine-grained material that surrounds larger crystals or phenocrysts in igneous rock, and it does not pertain to the void spaces.

Phenocryst (option A): Phenocryst refers to the large crystals embedded within a finer-grained matrix or groundmass in an igneous rock. While phenocrysts may be present in volcanic rocks, they are not directly related to the void spaces resulting from degassing of lava.

To learn more about Vesicles click here

https://brainly.com/question/1743302

#SPJ11

Consider heat flow in a rod of length L where the heat is lost across the lateral boundary is given by Newton's law of cooling. The model is = Ut = kurz – hu, 0 < x < L, t> 0 u(0,t) = u(L,t) = 0 for all t > 0, u(x,0) = f(x), 0 < x < L, = = = where h> 0 is the heat loss coefficient. 1. Find the equilibrium temperature.

Answers

The equilibrium temperature of the rod is zero degrees Celsius (0°C).

In the given heat flow model, the equilibrium temperature is reached when the temperature distribution throughout the rod remains constant over time. This implies that the rate of heat loss (kurz) is equal to the rate of heat conduction within the rod (hu). Since the rod is losing heat across the lateral boundaries, the equilibrium temperature occurs when the entire rod reaches the same temperature.

From the boundary conditions u(0,t) = u(L,t) = 0, we can deduce that the temperature at both ends of the rod is zero. This indicates that the equilibrium temperature is zero degrees Celsius.

Therefore, the equilibrium temperature of the rod is zero degrees Celsius (0°C).

Learn more about  equilibrium temperature: https://brainly.com/question/24140439

#SPJ11

assume that a 7.0-cm-diameter, 110 w light bulb radiates all its energy as a single wavelength of visible light.

Answers

The wavelength of visible light is in the range of 400-700 nm. Assume that a 7.0-cm-diameter, 110 w light bulb radiates all its energy as a single wavelength of visible light. To calculate the energy of the light, we must first convert the diameter of the bulb into a radius:r = d/2 = 3.5 cm.

We can then calculate the surface area of the bulb: A = πr² = π(3.5 cm)² = 38.48 cm²The radiant flux of the light bulb (power emitted) is 110 W, which means it emits 110 joules of energy per second. The energy density of the light can be found by dividing the radiant flux by the surface area: E = P/A = 110 W / 38.48 cm² = 2.86 W/cm².

Now, we can use the equation for radiant energy density to find the energy per photon: E = hc/λ, where h is Planck's constant, c is the speed of light, and λ is the wavelength of the light.

Solving for λ, we get:λ = hc/E = (6.626 x 10⁻³⁴ J s)(3.00 x 10⁸ m/s) / (2.86 W/cm²)(10⁴ cm²/m²) = 2.19 x 10⁻⁷ m or 219 nm.

Therefore, the wavelength of the light emitted by the bulb is 219 nm.

Learn more about radiant flux here ;

https://brainly.com/question/15655691

#SPJ11

The electric force on a charged particle in an electric fieldis F. What will be the force if the particle's charge is tripledand the electric field strength is halved?
It wants the answer in terms of F...can anyone give me theequation that would be a starting point?

Answers

Therefore, the force when the particle's charge is tripled and electric field strength is halved will be equal to (3/4) times the original force F. That is  F" = 3F/4.

To Find: The force if the particle's charge is tripled and the electric field strength is halved, in terms of F.

 The force on a charged particle in an electric field is given by the formula:

F = qE

where q = charge on the particle ,

E = electric field strength,

F is directly proportional to the charge and electric field strength.

Thus , If the particle's charge is tripled, F will be three times its original value.

F' = 3qE

F' = 3(qE)

F' = 3F,

On the other hand, If the electric field strength is halved, F will be half its original value.

F" = (1/2)q E

F" = (1/2)(qE/2)

F" = (1/4)F

Final Formula: The force on the particle when the charge is tripled and electric field strength is halved is given by:

F" = (1/4) x 3

F = 3F/4

to know more about electric field strength visit:

https://brainly.com/question/17093047

#SPJ11

The critical angle for a certain liquid-air surface is 47.2 degree. What is the index of refraction of the liquid?

Answers

To find the index of refraction of the liquid, we can use the formula for the critical angle:

The index of refraction of a medium can be determined using the formula: n = 1 / sin(critical angle) where n is the index of refraction and the critical angle is measured in radians. To convert the critical angle from degrees to radians, we use the conversion factor π/180. In this case, the critical angle is 47.2 degrees. Converting it to radians: critical angle (in radians) = 47.2 degrees × π/180 ≈ 0.823 radians. Now we can calculate the index of refraction: n = 1 / sin(critical angle) ≈ 1 / sin(0.823) ≈ 1 / 0.731 ≈ 1.368. Therefore, the index of refraction of the liquid is approximately 1.368.sin(critical angle) = 1 / refractive index of the liquid. Given that the critical angle is 47.2 degrees, we can calculate the refractive index (n) of the liquid as follows: sin(47.2 degrees) = 1 / n. Using a scientific calculator or trigonometric tables, we find: n = 1 / sin(47.2 degrees) ≈ 1.318 Therefore, the index of refraction of the liquid is approximately 1.318.

To learn more about critical, https://brainly.com/question/30002645

#SPJ11

You wish to adapt the AA method to measure the amount of iron in leaf tissues. The minimum amount of iron in the tissues is expeted to be about 0.0025% by mass. The minimum concentration for AA measurements is 0.30 ppm. Your plan is to weigh out 4.0g leaf tissue samples, digest them in acid, filter and dilute them to 50mL. This solution is your "sample stock solution". You will then pipet a portion of this solution into a 25-mL volumetric flask and dilute to volume. This solution is your "diluted sample solution" and you will make your AA measurements on this solution. The question is, how much of the sample stock solution should you use if the dilute sample solution needs to have a concentration of 0.20 ppm?
a) How many milligrams of Fe are in 4.0g of a leaf tissue that is 0.0025% Fe by mass? *Remember, 0.0025% by mass = 0.0025g Fe in 100g of sample
b) If all of the iron from the 4.0g leaf sample in the previous question is diluted in a 50 mL flask, what is the concentration of the resulting stock solution (in ppm)?
c) What volume of the stock solution made in the previous question is needed to prepare 25.0 mL of a dilute sample solution with a concentration of 0.30 ppm Fe?

Answers

a) The amount of Fe in 4.0g of leaf tissue is 0.1mg.

b) The resulting stock solution has a concentration of 2 ppm.

c) 3.75 mL of the stock solution is needed to prepare 25.0 mL of a dilute sample solution with a concentration of 0.30 ppm Fe.

a) To calculate the amount of Fe in 4.0g of leaf tissue that is 0.0025% Fe by mass:

Amount of Fe = (0.0025/100) × 4.0g = 0.0001g or 0.1mg

b) If all of the iron from the 4.0g leaf sample is diluted in a 50 mL flask, we can calculate the concentration of the resulting stock solution:

Concentration = (Amount of Fe / Volume of solution) × [tex]10^6[/tex]

Concentration = (0.0001g / 50mL) × [tex]10^6[/tex] = 2 ppm

c) To determine the volume of the stock solution needed to prepare 25.0 mL of a dilute sample solution with a concentration of 0.30 ppm Fe:

The volume of stock solution = (Concentration of dilute sample / Concentration of stock solution) × Volume of a dilute sample

Volume of stock solution = (0.30 ppm / 2 ppm) × 25.0 mL = 3.75 mL

Learn more about concentration at

https://brainly.com/question/3045247

#SPJ4

A cart at the end of a spring undergoes simple harmonic motion of amplitude A = 10 cm and frequency 5.0 Hz. Assume that the cart is at x=−A when t=0. Write an expression for the cart's position as a function of time Express your answer in terms of the π and t.

Answers

The expression for the cart's position as a function of time is:

x(t) = 10 * cos(2π * 5.0t + π)

What is time?

Time is a fundamental concept in physics and is used to measure the duration or sequence of events. Time is often measured in units such as seconds, minutes, hours, days, months, and years.

The position (x) of the cart undergoing simple harmonic motion can be expressed as a function of time (t) using the equation:

x(t) = A * cos(2πft + φ)

where:

x(t) is the position of the cart at time t,

A is the amplitude of the motion,

f is the frequency of the motion,

π is the mathematical constant pi (approximately 3.14), and

φ is the phase angle.

In this case, the given amplitude is A = 10 cm and the frequency is f = 5.0 Hz. We are also given that the cart is at x = -A when t = 0. This information allows us to determine the phase angle.

Since the cart is at x = -A when t = 0, we substitute these values into the equation and solve for the phase angle:

-10 = 10 * cos(2π * 5.0 * 0 + φ)

-1 = cos(φ)

From the equation, we can see that the cosine function is equal to -1 when the phase angle is φ = π.

Therefore, the expression for the cart's position as a function of time is:

x(t) = 10 * cos(2π * 5.0t + π)

To learn more about time,

https://brainly.com/question/26046491

#SPJ4

you have a circuit of four 4.5 v d-cell batteries in series, some wires, and a light bulb. the bulb is lit and the current flowing through the bulb is

Answers

You have a circuit of four 4.5 v d-cell batteries in series, some wires, and a light bulb, the bulb is lit and the current flowing through the bulb is depends on its resistance.

When four 4.5 V D-cell batteries are connected in series, the total voltage is 18 V. This voltage pushes the current through the light bulb, causing it to light up. The exact amount of current that flows through the bulb depends on its resistance. However, the current flowing through the bulb can be calculated using Ohm's Law.

Ohm's Law states that the current through a conductor between two points is directly proportional to the voltage across the two points. The constant of proportionality is the resistance of the conductor, this means that I = V / R, where I is the current, V is the voltage, and R is the resistance. In this case, since the bulb is lit, we know that there is current flowing through it. However, without knowing the resistance of the bulb, we cannot calculate the exact value of the current. So therefore the bulb is lit and the current flowing through the bulb is depends on its resistance.

To know more about Ohm's Law visit:

https://brainly.com/question/12372387

#SPJ11

how do you diagram the functional dependence on therapycode in the therapies table?

Answers

The functional dependence on the `therapycode` in the `therapies` table can be diagrammed using an entity-relationship diagram (ERD) or a dependency diagram.

In an ERD, the `therapies` table would be represented as an entity, with attributes such as `therapycode`, `therapyname`, and any other relevant information. The `therapycode` attribute would be underlined or marked as the primary key, indicating its uniqueness in identifying each therapy record.

To represent the functional dependence, an arrow or line can be drawn from the `therapycode` attribute to any other attribute in the `therapies` table that is functionally dependent on it. For example, if there is an attribute called `therapydescription` that is determined by the `therapycode`, an arrow would be drawn from `therapycode` to `therapydescription` to indicate the functional dependence.

In the explanation, you can provide more details about the purpose and significance of the functional dependence diagram in the context of the `therapies` table. You can mention that the diagram helps visualize the relationships between the attributes and understand how changes in the `therapycode` value may impact other attributes. Additionally, you can explain that this diagram aids in database design, normalization, and query optimization by identifying and organizing functional dependencies accurately.

To learn more about entity-relationship refer:

https://brainly.com/question/17063244

#SPJ11

what is the temperature of a star (in kelvin) if its peak wavelength is 425 nm? your answer:

Answers

The temperature of a star can be determined using Wien's displacement law, which relates the peak wavelength of its radiation to its temperature.

The formula is given as [tex]\lambda_m_a_x = b / T[/tex], where b is Wien's constant.

According to Wien's displacement law, the peak wavelength ([tex]\lambda_m_a_x[/tex]) of radiation emitted by a black body is inversely proportional to its temperature (T). The formula is given as [tex]\lambda_m_a_x = b / T[/tex], where b is Wien's constant. To determine the temperature of a star when its peak wavelength is known, we can rearrange the equation to solve for [tex]T: T = b / \lambda_m_a_x[/tex].

In this case, the peak wavelength is given as 425 nm. However, the equation requires the wavelength to be in meters, so we need to convert 425 nm to meters. Since 1 nm is equal to [tex]10^-^9[/tex] meters, the peak wavelength becomes [tex]425 * 10^-^9[/tex] meters. Plugging this value into the equation, along with Wien's constant (approximately [tex]2.898 *10^-^3 m.K[/tex]), we can calculate the temperature of the star. The resulting value will be in Kelvin, giving us an accurate measurement of the star's temperature based on its peak wavelength.

Learn more about Wien's displacement law here:

https://brainly.com/question/31780394

#SPJ11

swinging a tennis racket against a ball is an example of a third class lever. please select the best answer from the choices provided.
a.true
b.false

Answers

The given statement "swinging a tennis racket against a ball is an example of a third-class lever" is TRUE.

A third-class lever is a class of lever where the input force is located between the fulcrum and the load. The fulcrum is the pivot point of the lever. The load is the weight or resistance that is being moved, lifted, or carried.The following are some examples of third-class levers: Sweeping with a broom. Tennis racket. Field hockey stick. Butter knife, etc. Thus, we can say that swinging a tennis racket against a ball is an example of a third-class lever.

To know more about tennis racket visit:

https://brainly.com/question/11490587

#SPJ11

transverse pulses travel with a speed of 195 m/s along a taut copper wire whose diameter is 1.70 mm. what is the tension in the wire? (the density of copper is 8.92 g/cm3.)

Answers

The tension in the wire is approximately 9.3289 * 1[tex]0^{3}[/tex]  Newtons (N).

Let's calculate the tension in the wire step by step.

Step 1: Convert the density of copper to g/m³.

Density of copper = 8.92 g/cm³ = 8.92 * 1000 kg/m³ = 8920 kg/m³

Step 2: Calculate the cross-sectional area of the wire.

Given diameter = 1.70 mm = 1.70 * 1[tex]0^{-3}[/tex] m

Radius (r) = 0.85 * 1[tex]0^{-3}[/tex] m

Cross-sectional area (A) = π * r²

A =  π * [tex](0.85 * 10^{-3} )^2[/tex]

Step 3: Calculate the tension (T) using the wave speed equation.

Wave speed (v) = 195 m/s

T = μ * v² / A

T = (8920 kg/m³)  * [tex](195 m/s)^2[/tex]  / A

Now, substitute the value of A into the equation and calculate T

A = π * [tex](0.85 * 10^{-3} )^2[/tex]

A = 2.2684 * 1[tex]0^{-6}[/tex] m²

T = (8920 kg/m³) * [tex](195 m/s)^2[/tex] / (2.2684 * 1[tex]0^{-6}[/tex] m²)

T = 9.3289 * 1[tex]0^{3}[/tex]  N

Therefore, the tension in the wire is approximately 9.3289 * 1[tex]0^{3}[/tex] Newtons (N).

To know more about tension here

https://brainly.com/question/32457240

#SPJ4

A satellite orbiting the earth is directly over a point on the equator at 12:00 midnight every two days. It is not over that point at any time in between. What is the radius of the satellite's orbit?

Answers

The radius of the satellite's orbit is approximately 3039 kilometers.

The time taken for one complete orbit is the period of the satellite's orbit. In this case, the period is two days or 48 hours.

The formula for the period of a satellite's orbit is:

T = 2π√(r³/GM)

Where:

T is the period of the orbit

r is the radius of the orbit

G is the gravitational constant (approximately 6.674 × 10^-11 m³/(kg·s²))

M is the mass of the Earth (approximately 5.972 × 10^24 kg)

In this case:

T = 48 hours = 48 × 3600 seconds (converting to seconds)

G = 6.674 × 10^-11 m³/(kg·s²)

M = 5.972 × 10^24 kg

Substituting the values into the formula, we have:

48 × 3600 = 2π√(r³ / (6.674 × 10^-11 × 5.972 × 10^24))

172,800 = 2π√(r³ / (6.674 × 5.972))

27,600 = √(r³ / (6.674 × 5.972))

r³ / (6.674 × 5.972) = (27,600)²

r³ = (27,600)² × (6.674 × 5.972)

Taking the cube root of both sides to solve for r, we get:

r ≈ ∛((27,600)² × (6.674 × 5.972))

r ≈ ∛(762,048,000 × 39.784)

r ≈ ∛(30,412,577,920)

r ≈ 3039 km (approximately)

Learn more about satellite's orbit here:

https://brainly.com/question/28106901

#SPJ11

a certain digital camera having a lens with focal length 7.50 cm focuses on an object 1.85 m tall that is 4.30 m from the lens. Is the image on the photocells erect or inverted? Real or virtual?
Is the image on the photocells erect or inverted? Real or virtual?
The image is erect and real.
The image is inverted and real.
The image is erect and virtual.
The image is inverted and virtual.

Answers

The image formed on the photocells by the lens is inverted and real. The negative sign in the image distance indicates an inverted image, and the fact that the image is formed by the lens makes it real rather than virtual

To determine the nature of the image formed by the lens, we can use the lens formula:

1/f = 1/u + 1/v

where f is the focal length of the lens, u is the object distance, and v is the image distance.

Focal length (f) = 7.50 cm = 0.075 m

Object distance (u) = 4.30 m

We can rearrange the lens formula to solve for the image distance (v):

1/v = 1/f - 1/u

1/v = 1/0.075 - 1/4.30

1/v = 13.33 - 0.23

1/v ≈ 13.10

v ≈ 0.076 m

Since the image distance (v) is positive, it indicates that the image is formed on the same side as the object, which means it is a real image. Additionally, since the image is formed by the lens, the image is inverted.

The image formed on the photocells by the lens is inverted and real. The negative sign in the image distance indicates an inverted image, and the fact that the image is formed by the lens makes it real rather than virtual.

To know more about lens visit:

https://brainly.com/question/30995178

#SPJ11

What is the angular acceleration of a 75 g lug nut when a lug wrench applies a 135 N-m torque to it? Model the lug nut as a hollow cylinder of inner radius 0.85 cm and outer radius 1.0 cm (I = Y M (r1? + rz?)): What is the tangential acceleration at the outer surface? What factor was not considered which causes this acceleration to be so large?

Answers

To determine the angular acceleration of the lug nut, we can use the torque formula: Torque (τ) = Moment of inertia (I) * Angular acceleration (α)

The moment of inertia of the hollow cylinder can be calculated using the formula: I = (1/2) * m * (r1^2 + r2^2), where m is the mass and r1 and r2 are the inner and outer radii, respectively. Given: Mass of the lug nut (m) = 75 g = 0.075 kg Inner radius (r1) = 0.85 cm = 0.0085 m Outer radius (r2) = 1.0 cm = 0.01 m. Torque (τ) = 135 N-m. Calculating the moment of inertia: I = (1/2) * 0.075 * (0.0085^2 + 0.01^2) = 6.19 × 10^-6 kg·m^2 Now we can solve for the angular acceleration (α): τ = I * α 135 = 6.19 × 10^-6 * α α = 135 / (6.19 × 10^-6) = 2.18 × 10^7 rad/s^2. To find the tangential acceleration at the outer surface, we can use the formula: Tangential acceleration (at) = Radius (r) * Angular acceleration (α) Using the outer radius (r2) = 0.01 m: at = 0.01 * 2.18 × 10^7 = 2.18 × 10^5 m/s^2. The factor that was not considered and causes this acceleration to be so large is the small radius of the lug nut. The tangential acceleration is directly proportional to the radius, so a smaller radius results in a larger tangential acceleration. In this case, the small radius of the lug nut contributes to the large tangential acceleration.

To learn more about acceleration, https://brainly.com/question/1980605

#SPJ11

Two stationary positive point charges, charge 1 of magnitude 4.00 nC and charge 2 of magnitude 1.80 nC , are separated by a distance of 58.0 cm. An electron is released from rest at the point midway between the two charges, and it moves along the line connecting the two charges. What is the speed vfinal of the electron when it is 10.0 cm from charge 1? Express your answer in meters per second.

Answers

The final speed of the electron, denoted as [tex]$v_{\text{final}}$[/tex], when it is 10.0 cm away from charge 1 can be calculated using the principles of electrostatics.

The initial position of the electron is at the midpoint between the two charges. We know that the charges are positive and stationary. Therefore, the electric field produced by charge 1 points towards charge 2. As the electron is negatively charged, it will experience a force in the opposite direction, i.e., towards charge 1. This force will cause the electron to accelerate.

To calculate [tex]$v_{\text{final}}$[/tex], we can use the conservation of energy. Initially, the electron is at rest, so its initial kinetic energy is zero. The final kinetic energy is given by [tex]\frac{1}{2mv^2_{final}}[/tex], where m is the mass of the electron. The change in potential energy is given by [tex]$q\Delta V$[/tex], where q is the charge of the electron and [tex]$\Delta V$[/tex] is the change in electric potential.

The change in potential energy can be calculated by considering the electric potential at the midpoint and at a point 10.0 cm from charge 1. The electric potential at a point due to a point charge is given by [tex]$V = \frac{kq}{r}$[/tex], where k is the electrostatic constant, q is the charge, and r is the distance from the charge. By considering the signs and magnitudes of the charges, we can determine the change in potential energy.

By equating the initial kinetic energy to the change in potential energy, we can solve for [tex]$v_{\text{final}}$[/tex]. The mass of an electron is known, and the values for the charges and distances are provided in the problem. Converting the given values to SI units (coulombs and meters), we can perform the necessary calculations to find the final speed of the electron.

To learn more about electrostatics refer:

https://brainly.com/question/30253781

#SPJ11

what angular magnification is obtainable with the lens if the object is at the focal point?

Answers

If the object is located at the focal point of a lens, the angular magnification obtained is infinite. This is known as the "limiting case" of angular magnification.

Angular magnification (M) is defined as the ratio of the angle subtended by the image (θi) to the angle subtended by the object (θo):

[tex]\begin{equation}M = \frac{\theta_i}{\theta_o}[/tex]

When the object is at the focal point of the lens, the image formed by the lens becomes "at infinity." In this case, the angle subtended by the image (θi) is also at infinity. As a result, the angular magnification becomes:

[tex]\begin{equation}M = \frac{\infty}{\theta_o} = \infty[/tex]

Therefore, when the object is at the focal point of the lens, the angular magnification obtained is infinite. This indicates that the image appears to be greatly magnified, but it is not a true representation as the image is formed at infinity.

To know more about the Angular magnification refer here :

https://brainly.com/question/31393439#

#SPJ11

a rod of length 9 meters and mass 9.7 kg can rotate about one end. the rtod is released from rest at an alge of a degrees above the horizontal. what is the speed of the tip in m/s as the rod passes through the horizontal position?

Answers

A rod of length 9 meters and mass 9.7 kg can rotate about one end. The speed of the tip in m/s as the rod passes through the horizontal position is 0.7542a meters/second.

We have a rod which is rotating about one end, and it has a length of 9 meters and mass of 9.7 kg. Now, the rod is released from rest at an angle of a degrees above the horizontal. We have to find the speed of the tip in m/s as the rod passes through the horizontal position.

The formula used to find the speed of the tip in m/s as the rod passes through the horizontal position is:

v = ωr

where, v is the velocity of the tip

ω is the angular velocity

r is the radius of the rod

First, we have to calculate the radius of the rod. Radius of the rod, r = Length of the rod / 2= 9 / 2= 4.5 meters. Now, we  can use the equation of torque to find the angular velocity.

τ = Iα

Where, τ is the torque

I is the moment of inertia

α is the angular acceleration

We have to consider the whole rod as a single point mass which rotates about an end. The moment of inertia of the rod can be calculated as I = ml² / 3, where m is the mass and l is the length of the rod.

Now, I = (9.7 × 9²) / 3= 261.8 kgm² Torque τ is given by,

τ = Fr

where F is the force which is acting on the rod to make it rotate. r is the radius of the rod

We can break the weight of the rod into horizontal and vertical components. Force acting horizontally on the rod = Fh = F sin α

Where F is the weight of the rod

Force acting vertically on the rod = Fv = F cos α

As the rod is released from rest, initial angular velocity will be 0.

Now we can use the equation of torque to find the angular velocity

τ = Iατ = Fr

Frsinα = Iα

α = (rsinαF) / Iα = (4.5 sin a × 9.8) / 261.8

α = 0.1676a rad/s

Now we can calculate the velocity of the tip using the formula,

v = ωr= 0.1676

a × 4.5= 0.7542a meters/second

The speed of the tip in m/s as the rod passes through the horizontal position is 0.7542a meters/second.

To know more about speed, refer here:

https://brainly.com/question/17661499#

#SPJ11

A rocket is launched straight up from the earth's surface at a speed of 1.90x104 m/s. For help with math skills, you may want to review: Mathematical Expressions involving Squares What is its speed when it is very far away from the earth? Express your answer with the appropriate units.

Answers

When the rocket is very far away from the Earth, its speed will approach zero. As the rocket moves away from the Earth's surface, it will be subject to the gravitational pull of the Earth, which will gradually decrease as the distance between the rocket and the Earth increases.

The gravitational force is inversely proportional to the square of the distance between two objects. Therefore, as the rocket moves farther away, the gravitational force acting on it decreases, leading to a decrease in acceleration. Eventually, at a very large distance from the Earth, the gravitational force becomes negligible, and the rocket's acceleration approaches zero.

According to the law of conservation of energy, the total mechanical energy of the rocket is conserved throughout its motion. Initially, the rocket has kinetic energy due to its high speed. However, as it moves away from the Earth, its potential energy increases while its kinetic energy decreases. Eventually, when the rocket is very far away, its kinetic energy approaches zero, which corresponds to its speed approaching zero. Therefore, the speed of the rocket when it is very far away from the Earth is effectively zero.

To learn more about gravitational refer:

https://brainly.com/question/72250

#SPJ11

Two rockets, A and B, approach the earth from opposite directions at speed 0.800 . The length of each rocket measured in its rest frame is 100 m. What is the length of rocket A as measured by the crew of rocket B?

Answers

The length of rocket A as measured by the crew of rocket B is 60 meters.

Length of the object in its own rest frame = L = 100 m

The relative velocity between the two frames = V = 0.800c

In the given case, it is required to use the Lorentz transformation formula for length contraction to determine the length of rocket A as measured by the crew of rocket B. The equation is provided by:

L' = L x √(1 - (v²/c²))

L' denotes the object's length as measured in the alternate frame, in this example, by the crew of rocket B.

Substituting the values into the formula -

= 100 x √(1 - (0.800²/1²))

= 100 x √(1 - 0.64)

= 100 x √(0.36)

= 100 x 0.6

= 60

Read more about rocket on:

https://brainly.com/question/30584355

#SPJ4

Other Questions
a compound with the molecular formula c5h10o2 has the following nmr spectrum. determine the number of protons giving rise to each signal. how many grams of n2(g) can be made from 9.05 g of nh3 reacting with 45.2 g cuo? On January 1, you bought 4 April gold futures contract at a futures price of $250/oz. The contract size is 100 oz. If the April futures price is $275/oz on February 1, your profit would be ____________ if you close your position. A. -$2,500 B. $10,000 OC.-$10,000 OD. $2,500 00 Question 2 (10 points) To determine the period and rotation of the Sun, suppose you tracked a sunspot moving across the Sun's surface and measured its longitude and latitude over a period of 11 days. In the short story "The Star" the Jesuit is dismayed because what he has discovered challenges one of the following characteristics of God.Group of answer choicesOmniscienceOmnibenevolenceOmnipresenceOmnipotence T/F. in the oxygen-hemoglobin dissociation curve, less hemoglobin combines with oxygen as oxygen concentration increases. A company activated a machine on 1st of July 2021. The acquisition cost of the asset: 12.000.000 HUF and theresidual value is 2.000.000 HUF. The expected useful life 5 years, while the CIT depreciation rate is 14,5%.1. Tax base increasing item2. Tax base decreasing item You set up a tasting station and have 150 people sample diet Coke, diet Pepsi, and the new diet cola (in unmarked cups). You then have them choose one as their favorite. Of the 150 people, 50 chose Coke, 42 chose Pepsi, and 58 chose the new drink. You analyze the data with a chi-square testa. State the null hypothesis in words. b. State the alternative hypothesis in words. Eric is hanging a rectangle mirror that has a diagonal of 47 inches with an angle of depression of 60. How many square inches is the mirror? (round to nearest tenth)A) 956. 5 in2 B) 1,104. 5 in2 C) 1,365. 5 in2 D) 1795. 5 in2 you are tasked to design a cartoon box, where the sum of width, height and length must be lesser or equal to 258 cm. Solve for the dimension (width, height, and length) of the cartoon box with maximum volume. List down all the assumptions/values/methods used to solve this question. Compare the answer between manual and solver program, draw conclusion for your design. 12.doctors often try to reduce the symptoms of gluconeogenesis deficiencies by prescribing thiamine and lipoic acid supplements. which enzyme/complex would these supplements target and why? Sorenson Corp.'s expected year-end dividend is D1 =$1.00, its required return is rs = 15.00%, its dividendyield is 6.00%, and its growth rate is expected to be constant inthe future. What is Sorens Find the area of the shaded region. The graph to the right depicts IQ scores of adults, and those scores are normally distributed with a mean of 100 and a standard deviation of 15. The shade region is 125. A researcher is trying to find the average pulse rate of a group of patients with diabetes, and the distribution of pulse rates appears normally distributed. Which procedure should he use?MedianIndependent samples t-testMeanMode barnett company had the following raecords: 2022 2021Ending inventory $32,650 $30,490Cost of goods sold $306,300 313.500what is barnett's average days in inventory for 2022? (rounded) group of answer choices 1) 37.6 days 2) 38.8 days 3) 36.9 days 4) 36.5 days The electric force on a charged particle in an electric fieldis F. What will be the force if the particle's charge is tripledand the electric field strength is halved?It wants the answer in terms of F...can anyone give me theequation that would be a starting point? although other civilizations built aqueducts, the romans are most famous, for their construction and use. Consider heat flow in a rod of length L where the heat is lost across the lateral boundary is given by Newton's law of cooling. The model is = Ut = kurz hu, 0 < x < L, t> 0 u(0,t) = u(L,t) = 0 for all t > 0, u(x,0) = f(x), 0 < x < L, = = = where h> 0 is the heat loss coefficient. 1. Find the equilibrium temperature. helpQuestion Completion Status: QUESTION 1 3 points Saved What is the Equity multiplier (EM)? Using EM, explain how increasing the bank capital would have a negative impact on the ROA for equity holders? given the binomials (x 1), (x 4), (x 5), and (x 2), which one is a factor of f(x) = 3x3 12x2 4x 55? (2 points) (x 1) (x 4) (x 5) (x 2)