In simple harmonic motion, when does the velocity have a maximum magnitude? a. when the magnitude of the acceleration is a minimum b. when the magnitude of the acceleration is a maximum c. when the displacement is a maximum d. when the potential energy is a maximum

Answers

Answer 1

Answer:

C

Explanation:

Answer 2

In simple harmonic motion, the velocity has a maximum magnitude when the displacement is zero.

In simple harmonic motion, the motion of an object is described by a sinusoidal function. The equation of motion for simple harmonic motion is given by:

x(t) = A * cos(ωt + φ)

where:

x(t) is the displacement of the object at time t,

A is the amplitude of the motion,

ω is the angular frequency, and

φ is the phase angle.

The velocity of the object is the derivative of the displacement with respect to time:

v(t) = dx/dt = -A * ω * sin(ωt + φ)

To find the maximum magnitude of the velocity, we need to determine when the absolute value of the velocity is at its maximum.

Since the sine function oscillates between -1 and 1, the maximum magnitude of the velocity occurs when the absolute value of sin(ωt + φ) is equal to 1.

From the equation of velocity, we can see that the magnitude of the velocity is maximum when sin(ωt + φ) is equal to 1.

This happens when ωt + φ is equal to ±π/2 or ±3π/2, which corresponds to the displacement being zero. Therefore, the answer is:

a. when the magnitude of the acceleration is a minimum

To know more about velocity visit:

https://brainly.com/question/20885248

#SPJ11


Related Questions

A Water Tank on Mars 5 of 12 Review Part A You are assigned the design of a cylindrical, pressurized water tank for a future colony on Mars where the acceleration due to gravity is 3.71 m/s The pressure at the surface of the water will be 120 kPa, and the depth of the water will be 13.7 m The pressure of the air outside the tank, which is elevated above the ground, will be 92.0 kPa. Find the net downward force on the tank's flat bottom, of area 1.85 m2, exerted by the water and air inside the tank and the air outside the tank. Assume that the density of water is 1.00 g/cm3 Express your answer in newtons.

Answers

The net downward force on the cylindrical water tank's flat bottom on Mars can be calculated by considering the pressures of water and air inside the tank, as well as the pressure of the air outside the tank.

To calculate the net downward force on the tank's flat bottom, we need to consider the pressures of water and air inside the tank, as well as the pressure of the air outside the tank. The pressure at the surface of the water is given as 120 kPa, and the pressure of the air outside the tank is 92.0 kPa. The depth of the water is 13.7 m.

The net downward force can be determined by calculating the total pressure exerted on the bottom of the tank. The pressure exerted by the water can be found using the formula [tex]P = \rho gh[/tex] where P is the pressure, ρ is the density of water, g is the acceleration due to gravity, and h is the depth of the water. Substituting the given values, we can find the pressure exerted by the water.

The pressure exerted by the air inside the tank is equal to the pressure of the air outside the tank, as both are in equilibrium. Therefore, the net downward force on the tank's flat bottom is the sum of the pressures exerted by the water and the air inside the tank, minus the pressure of the air outside the tank.

To express the answer in newtons, we multiply the net downward force by the area of the tank's flat bottom, which is given as 1.85 m².

Learn more about fluid pressure here:

https://brainly.com/question/24280763

#SPJ11

Part II. Dust in Galaxies Besides stars, galaxies can also contain much dust. The dust is seen as dark bands across or patches in a galaxy. 5. Which of the following type of galaxy shows evidence of dust? Elliptical Spiral Both Neither 6. Which of the following type of galaxy can have a relatively intense star-formation episode also knows as "Star Burst"? Elliptical Spiral Irregular None

Answers

5. Spiral galaxies show evidence of dust. The correct answer is opyion(b). Galaxies can contain much dust besides stars.

Dust is seen as dark bands across or patches in a galaxy. Spiral galaxies show evidence of dust as they are one of the three major types of galaxies (the other two being elliptical and irregular galaxies). Spiral galaxies are disk-shaped, with a central bulge and arms that spiral outwards. These arms contain a lot of gas and dust, which can form into new stars.

6. Spiral galaxies can have a relatively intense star-formation episode also knows as "Star Burst.

Star formation is an important characteristic of spiral galaxies. These galaxies have a lot of gas and dust in their arms, which can form into new stars. Some spiral galaxies can have a relatively intense star-formation episode also known as "Star Burst." During these episodes, many new stars form in a relatively short period of time, which can make the galaxy much brighter.

To know more about galaxies refer to:

https://brainly.com/question/29128444

#SPJ11

For the transistor circuit shown below, what is the value of the base current? Vcc = +20 V RB 510 ΚΩ Vi 10 uF +|+ C₁ IB Rc 2.4 ΚΩ B + VBE E + +1₁ 10 μF HE C₂ VCE RE ·1.5 ΚΩ B = 100 CE 40 μF :

Answers

The calculated value of the current will be IB = 2.9176 uA

KVL stands for Kirchhoff's Voltage Law. It is one of the fundamental laws in electrical circuit analysis, named after Gustav Kirchhoff, a German physicist.

Kirchhoff's Voltage Law states that the sum of the voltages around any closed loop in an electrical circuit is equal to zero. In other words, the algebraic sum of the voltage drops (or rises) in a closed loop must be equal to the sum of the voltage sources in that loop.

Apply kvl from collector to base to emitter loop.

-VCC +IB x RB + VBE + IE x RE=0

IE = (1+β)IB

-VCC +IB x RB+VBE+(1+β)IB x RE=0

-20+510k x IB+0.7+(101) x IB x 1.5K=0

IB = 2.9176 uA

To know more about KVL follow

https://brainly.com/question/31392023

#SPJ4

The missing circuit is attached below.

find the position,size,and nature of the image formed by a spherical mirror from the folllowing data.
f= -12cm
u= -36
h= 2cm

Answers

The position of the image is 35 cm from the concave mirror, the size of the image is approximately 1.944 cm, and the nature of the image is upright.

To determine the position, size, and nature of the image formed by a spherical mirror, we can use the mirror formula:

1/f = 1/v - 1/u

where:

f is the focal length of the mirror,

u is the object distance (distance of the object from the mirror),

v is the image distance (distance of the image from the mirror).

Given data:

f = -12 cm (negative sign indicates a concave mirror)

u = -36 cm (negative sign indicates that the object is located on the same side as the incident light)

h = 2 cm (height of the object)

Substituting the values into the mirror formula, we have:

1/-12 = 1/v - 1/-36

Simplifying the equation:

-1/12 = (36 - v)/36

-1/12 = (36 - v)/36

-1 = 36 - v

v = 36 - 1

v = 35 cm

The positive value for v indicates that the image is formed on the opposite side of the mirror from the object.

To find the size of the image, we can use the magnification formula:

magnification (m) = -v/u

Substituting the values:

m = -35/-36

m ≈ 0.972

Since the magnification is positive, it indicates an upright image.

The size of the image can be determined using the magnification formula:

m = image height (h')/object height (h)

0.972 = h'/2

h' ≈ 1.944 cm

For such more questions on image

https://brainly.com/question/3457214

#SPJ8

A 400 N object is hung from the end of a wire of a cross-sectional area of 4 cm. The wire stretches from its original length of 100.00 cm to 134.97 cm. What is the elongation strain on the wire? Enter the value, no units, and use two decimal places

Answers

The elongation strain on the wire is 0.35.

Force, F = 400 N.

Cross-sectional area, A = 4 cm².

Initial length, L₀ = 100 cm.

Final length, L = 134.97 cm.

Strain = elongation / original length

Elongation = final length - original length

So,

Strain = (final length - original length) / original length

Strain = (L - L₀) / L₀

Substituting the values,

Strain = (134.97 cm - 100 cm) / 100 cm

         = 0.3497 or 0.35 (approx)

Therefore, the elongation strain on the wire is 0.35 (no units).

Learn more about the strain:

https://brainly.com/question/16062626

#SPJ11

Calculate the burnout velocity required to transfer a probe between the vicinity of the Earth (assumere = 1 DU) and the Moon's orbit using a Hohmann transfer. What additional AV would be required to place the probe in the same orbit as that of the Moon. Neglect the Moon's gravity in both parts.

Answers

Burnout velocity required to transfer a probe between the vicinity of the Earth and the Moon's orbit using a Hohmann transfer is given by the equation V = sqrt(GMe(2/r1-1/a)) - sqrt(GMm(2/r2-1/a)), where G is the gravitational constant, Me is the mass of the Earth, r1 is the initial radius of the Earth, a is the semi-major axis of the transfer ellipse, Mm is the mass of the Moon, and r2 is the final radius of the Moon.

The additional AV required to place the probe in the same orbit as that of the Moon is equal to the velocity of the Moon, which is approximately 1 km/s. Burnout velocity can be calculated using the given equation. In a Hohmann transfer, the spacecraft is first placed in an elliptical orbit around the Earth with the perigee at the radius of the Earth and the apogee at the radius of the Moon. The burnout velocity required for this transfer is given by V1=sqrt(GMe(2/r1-1/a)).Once the spacecraft reaches the apogee, a second burn is performed to circularize the orbit around the Moon. The additional velocity required for this burn is equal to the velocity of the Moon, which is approximately 1 km/s. Therefore, the additional AV required to place the probe in the same orbit as that of the Moon is approximately 1 km/s.

Know more about Burnout velocity, here:

https://brainly.com/question/30658771

#SPJ11

a conducting spherical ball of radius 0.21 m has a total charge 1.7 mc (milli-coulomb) distributed uniformly on its surface. there is no unbalanced charge on the sphere except on the surface. what is the charge per area on the surface of the ball

Answers

The charge per area on the surface of the ball can be found by using the formula:

Q / A = σ

the charge per area on the surface of the ball is 0.003070 C/m² (or coulombs per square meter).

The charge per area on the surface of the ball can be found by using the formula:

Q / A = σ

Where,Q = total charge on the ball

A = surface area of the ball

sigma (σ) = charge per unit area on the surface of the ball

Given,Total charge on the ball = 1.7 mC

Radius of the ball = 0.21 m

The surface area of the ball can be found using the formula for the surface area of a sphere:

A = 4πr²

A = 4 × π × (0.21 m)²

A = 0.5541 m²

Now, putting these values in the formula:

σ = Q / Aσ = 1.7 × 10⁻³ C / 0.5541 m²

σ = 0.003070 C/m²

Therefore, the charge per area on the surface of the ball is 0.003070 C/m² (or coulombs per square meter).

To know more about coulombs visit:

https://brainly.com/question/15167088

#SPJ11

two tiny particles having charges 20.0e-6 c and -8.00e-6 c are separated by a distance of 20.0 cm. what are the magnitude and direction of electric field midway between these two charges?

Answers

The magnitude of the electric field midway between the two charges is 1.8 x 10^5 N/C, pointing towards the negative charge.

To find the electric field midway between the two charges, we can use the principle of superposition. The electric field due to each charge at the midpoint is calculated separately, and then we add them together.

The electric field due to a point charge is given by the equation E = k * (Q / r^2), where E is the electric field, k is the electrostatic constant (8.99 x 10^9 N m^2/C^2), Q is the charge, and r is the distance from the charge.

For the positive charge (Q1 = 20.0e-6 C), the distance to the midpoint is half of the total separation, so r1 = 0.1 m. Substituting the values into the equation, we get E1 = (8.99 x 10^9 N m^2/C^2) * (20.0e-6 C / (0.1 m)^2) = 1.8 x 10^5 N/C.

For the negative charge (Q2 = -8.00e-6 C), the distance to the midpoint is also 0.1 m. However, the direction of the electric field due to a negative charge is opposite to the direction of the electric field due to a positive charge. Therefore, the electric field due to Q2 is -1.8 x 10^5 N/C.

To find the resultant electric field, we add the electric fields due to each charge. Since they have the same magnitude but opposite directions, the resulting electric field at the midpoint is 1.8 x 10^5 N/C, pointing towards the negative charge.

The magnitude of the electric field midway between the two charges is 1.8 x 10^5 N/C, and it points towards the negative charge. This means that if a positive test charge were placed at that point, it would experience a force directed towards the negative charge.

To know more about Magnitude,visit:
https://brainly.com/question/31022175
#SPJ11

What is the maximum height to which a motor

having a power rating of 20. 4 watts can lift a

5. 00-kilogram stone vertically in 10. 0 seconds?

(1) 0. 0416 m (3) 4. 16 m

(2) 0. 408 m (4) 40. 8 m

Answers

The maximum height to which the motor can lift the 5.00-kilogram stone vertically in 10.0 seconds is approximately 4.16 meters. The correct option is 3

How to determine the maximum height to which the motor can lift the stone vertically

We can use the equation for work done:

Work = Force * Distance

In this instance, the motor's work is equal to the change in the stone's potential energy as it is raised vertically. Potential energy is calculated as follows:

Mass times gravitational acceleration times height equals potential energy.

Given the stone's mass of 5.00 kg, the gravitational acceleration of about 9.8 m/s2, and the lifting time of 10.0 seconds, we may get the potential energy as follows:

Potential Energy = Mass * Gravitational Acceleration * Height

We can convert the work performed to potential energy and solve for height since the motor's power rating of 20.4 watts is equal to the amount of work completed in one unit of time.

Power = Time / Work

Energy Potential x Time equals Power

Potential Energy: Height = (Power * Time) / (Mass * Gravitational Acceleration) Mass * Gravitational Acceleration: Height = (Power * Time)

Substituting the given values:

Height = (20.4 W * 10.0 s) / (5.00 kg * 9.8 m/s²)

Height ≈ 4.16 m

Therefore, the maximum height to which the motor can lift the 5.00-kilogram stone vertically in 10.0 seconds is approximately 4.16 meters.

Learn more about work done here : brainly.com/question/25923373

#SPJ1

Determine the power of the corrective contact lenses required by a hyperopic (farsighted) eye whose near point is at 60.0 cm. We assume a normal reading distance of 25 cm, and an answer in diopters.
Sample submission: 1.23
Not for credit: repeat for a myopic (nearsighted) eye whose far point is at 60.0 cm. Answer: -1.67 diopters

Answers

For the myopic eye, the power of the corrective contact lenses required is -0.000286 diopters.

To determine the power of corrective contact lenses required for a hyperopic (farsighted) eye, we need to calculate the difference between the far point and the desired reading distance.

For a hyperopic eye, the near point is farther away than the desired reading distance. In this case, the near point is given as 60.0 cm, and the desired reading distance is 25 cm.

The power of the corrective contact lenses is given by the reciprocal of the difference between the near point and the desired reading distance:

Power = 1 / (near point - desired reading distance)

Substituting the values:

Power = 1 / (60.0 cm - 25 cm)

Power = 1 / (35.0 cm)

Power = 0.0286 cm^(-1)

To convert the power to diopters, we can divide by 100:

Power = 0.0286 / 100 diopters

Hence, the power of the corrective contact lenses required for the hyperopic eye is 0.000286 diopters.

For a myopic (nearsighted) eye with a far point of 60.0 cm, the procedure is similar:

Power = 1 / (far point - desired reading distance)

Power = 1 / (60.0 cm - 25 cm)

Power = 1 / (35.0 cm)

Power = 0.0286 cm^(-1)

To convert the power to diopters, we divide by 100:

Power = 0.0286 / 100 diopters

However, since the eye is myopic, the power will be negative:

Power = -0.000286 diopters

Therefore, for the myopic eye, the power of the corrective contact lenses required is -0.000286 diopters.

To learn more about lenses click here

https://brainly.com/question/32156996

#SPJ11

Two electrons are separated by a distance of

3. 00 × 10^−6 meter. What are the magnitude and

direction of the electrostatic forces each exerts

on the other?

(1) 2. 56 × 10^−17 N away from each other

(2) 2. 56 × 10^−17 N toward each other

(3) 7. 67 × 10^−23 N away from each other

(4) 7. 67 × 10^−23 N toward each other

Answers

Electrostatic forces between electrons in vacuum are given by Coulomb’s law. Coulomb's law states that the electrostatic force between two point charges is proportional to the product of their charges and inversely proportional to the square of the distance between them.

The force is along the line joining them and repulsive if they are of the same sign and attractive if they are of opposite sign.The electrostatic forces each exerts on the other is equal in magnitude and opposite in direction. Therefore, the force on electron 1 is F21, and that on electron 2 is F12. F12 = F21 = kq1q2/r²where k = 9 × 10^9 N · m²/C² is Coulomb’s constant, q1 and q2 are the charges of the electrons in coulombs (C), and r is the separation between the electrons in meters (m).When the electrons have the same charge sign,  the force is attractive.

The force on electron 1 is away from electron 2 and the force on electron 2 is toward electron 1.Magnitude of electrostatic forces isF12 = F21 = 2.307 × 10⁻²¹ NTherefore, the electrostatic forces each exerts on the other are away from each other with a magnitude of 2.307 × 10⁻²¹ N. Hence, the correct option is (3).

To know more about proportional visit :

https://brainly.com/question/31548894

#SPJ11

a car travels with an average speed of 38 mph. what is this speed in km/h?

Answers

A car travels with an average speed of 38 mph, The speed of the car is approximately 61.15 km/h.

To convert the speed from miles per hour (mph) to kilometers per hour (km/h), we can use the conversion factor:

1 mile = 1.60934 kilometers.

Therefore, to convert mph to km/h, we can multiply the speed in mph by the conversion factor:

38 mph * 1.60934 km/mi = 61.15 km/h.

Hence, the speed of the car is approximately 61.15 km/h.

The conversion factor of 1.60934 is an approximation for the conversion between miles and kilometers.

It is derived from the exact value of 1 mile equaling 1.609344 kilometers. In most practical situations, the rounded value of 1.60934 is used for simplicity and convenience.

To know more about average speed, refer here:

https://brainly.com/question/31448288#

#SPJ11

earth’s magnetic field is generated in the , which is composed of that is constantly .

Answers

Earth's magnetic field is generated in the core, which is composed of molten iron and nickel that is constantly in motion.

In what region is Earth's magnetic field generated?

The Earth's magnetic field is generated in the core, which is located at the center of our planet. The core is composed of molten iron and nickel, and it is in constant motion. This motion creates a phenomenon known as the geodynamo, which generates Earth's magnetic field.

The geodynamo works through a process called convection. The intense heat from the core causes the molten iron and nickel to become buoyant, leading to a continuous circulation of the materials. This motion generates electric currents, which, in turn, produce a magnetic field. The Earth's rotation further amplifies this field, creating the complex and dynamic magnetic field we observe.

The magnetic field generated by the core extends from the Earth's interior to its surrounding space, creating a protective shield called the magnetosphere. This shield plays a crucial role in shielding the planet from harmful solar radiation and charged particles emitted by the Sun. Additionally, Earth's magnetic field enables navigation by acting as a compass for birds, animals, and even some microorganisms.

Learn more about Magnetic field

brainly.com/question/14848188

#SPJ11

Uranus' moon Ariel shows considerable surface activity, a surprise considering its small size.

a. True
b. False

Answers

Uranus' moon Ariel shows considerable surface activity, a surprise considering its small size, the given statement is true because Uranus' moon, Ariel is known for showing considerable surface activity despite its small size.

The small moon is approximately half the size of Earth's moon, but it has a geological history that makes it one of the most geologically active moons in our solar system. Ariel's surface has many varied features like valleys, craters, and ridges. It also has a relatively young surface, which indicates a steady process of tectonic activity over time. This activity is thought to be the result of gravitational interactions between Ariel and other moons of Uranus, such as Miranda, Umbriel, and Titania.

The surface of Ariel is relatively bright and has a high albedo, which is the measure of how reflective a surface is. Ariel's surface is also primarily composed of water ice, which makes it an excellent reflector of sunlight. The tectonic activity on Ariel's surface is believed to be due to tidal heating generated by the gravitational forces of Uranus and the other moons. This activity causes the surface of Ariel to stretch and compress, leading to the formation of valleys and ridges. So therefore the given statement is true because Uranus' moon, Ariel is known for showing considerable surface activity despite its small size.

To know more about gravitational forces visit:

https://brainly.com/question/30761082

#SPJ11

a circular current loop of 10 turns carries a current of 5.0 a. if the radius of the loop is 5.0 cm, find the magnetic field at the center of the loop

Answers

The magnetic field at the center of the circular current loop is approximately 1.57 × 10⁻³ Tesla (T).

To find the magnetic field at the center of a circular current loop, we can use the formula for the magnetic field produced by a current-carrying loop:

B = (μ₀ * N * I) / (2 * R)

Where:

B is the magnetic field

μ₀ is the permeability of free space (approximately 4π × 10⁻⁷ T·m/A)

N is the number of turns in the loop

I is the current flowing through the loop

R is the radius of the loop

In this case:

Number of turns (N) = 10 turns

Current (I) = 5.0 A

Radius (R) = 5.0 cm = 0.05 m

Substituting the given values into the formula, we have:

B = (4π × 10⁻⁷ T·m/A * 10 turns * 5.0 A) / (2 * 0.05 m)

B = (4π × 10⁻⁷ T·m/A * 10 * 5.0) / (2 * 0.05)

B = (2π × 10⁻⁶ T·m/A * 10 * 5.0) / 0.1

B = (π × 10⁻⁵ T·m/A * 50) / 0.1

B = (5π × 10⁻⁵ T·m/A) / 0.1

B = 50π × 10⁻⁵ T·m/A

B ≈ 50 * 3.14 * 10⁻⁵ T·m/A

B ≈ 1.57 × 10⁻³ T·m/A

Learn more about magnetic field here:

https://brainly.com/question/31684166

#SPJ11

Find the centre of mass of the 20 shape bounded by the lines y = $1.3x between x = 0 to 1.9. Assume the density is uniform with the value: 2.7kg.m-? Also find the centre of mass of the 3D volume created by rotating the same lines about the x-axis. The density is uniform with the value: 3.1kg.m" (Give all your answers rounded to 3 significant figures.) a) Enter the mass (kg) of the 2D plate: Enter the Moment (kg.m) of the 2D plate about the y-axis: Enter the x-coordinate (m) of the centre of mass of the 2D plate: Submit part 6 marks Unanswered b) Enter the mass (kg) of the 3D body: Enter the Moment (kg m) of the 3D body about the y-axis: Enter the x-coordinate (m) of the centre of mass of the 3D body:

Answers

The centre of mass of the 20 shape bounded by the lines: a) The massis 8.775 kg. The moment is 3.947 kg·m. The x-coordinate is 0.993 m. b) The mass is 59.217 kg. The moment is 31.749 kg·m. The x-coordinate is 0.993 m.

a) To find the mass of the 2D plate, we need to calculate its area first. The shape bounded by the lines y = 1.3x and x = 0 to 1.9 forms a right triangle.

The base of the triangle is 1.9 units, and the height is given by y = 1.3x. Integrating y with respect to x over the given range, we find the area of the triangle to be 2.775 units².

Multiplying the area by the uniform density of 2.7 kg/m², we obtain the mass of the 2D plate as 8.775 kg.

To calculate the moment of the 2D plate about the y-axis, we need to integrate x times the density over the area of the plate.

Integrating x * (1.3x) with respect to x over the given range, we find the moment to be 3.947 kg·m.

The x-coordinate of the centre of mass of the 2D plate can be determined using the formula for the centre of mass of a two-dimensional system: x = moment / mass. Substituting the values, we find the x-coordinate to be 0.993 m.

b) To find the mass of the 3D body, we need to calculate its volume first. By rotating the lines y = 1.3x and x = 0 to 1.9 about the x-axis, we obtain a solid with a known volume. Using the formula for the volume of a solid of revolution,

we can calculate the volume of this solid as 18.869 m³. Multiplying the volume by the uniform density of 3.1 kg/m³, we obtain the mass of the 3D body as 59.217 kg.

To calculate the moment of the 3D body about the y-axis, we need to integrate x² times the density over the volume of the body.

Integrating x² * (1.3x)² with respect to x over the given range,

we find the moment to be 31.749 kg·m.

The x-coordinate of the centre of mass of the 3D body can be determined using the formula for the centre of mass of a three-dimensional system: x = moment / mass. Substituting the values, we find the x-coordinate to be 0.993 m.

To know more about centre of mass, refer here:

https://brainly.com/question/30389896#

#SPJ11

displacement vector points due east and has a magnitude of 2.00 km. displacement vector points due north and has a magnitude of 3.75 km. displacement vector points due west and has a magnitude of 2.50 km. displacement vector points due south and has a magnitude of 3.00 km. find the magnitude and direction (relative to due west) of the resultant vector

Answers

The magnitude and  direction of the resultant vector is 0.9 km and 56.3⁰ respectively.

What is the magnitude and direction of the resultant vector?

The magnitude and direction of the resultant vector is calculated as follows;

The resultant vector vertical direction;

Vy = 3.75 km north - 3.0 km south

Vy = 0.75 km due north

The resultant vector horizontal direction;

Vx = 2 km east - 2.5 km west

Vx = 0.5 km west

The magnitude of the resultant vector is calculated as;

V = √ ( 0.75²  + 0.5² )

V = 0.9 km

The direction of the vectors is calculated as;

θ = arc tan ( Vy / Vx )

θ =  arc tan  (0.75 / 0.5 )

θ = 56.3⁰

Learn more about magnitude of vectors here: https://brainly.com/question/3184914

#SPJ4

Estimate the pressure exerted on a floor by
(a) one pointed heel of = 0.45 cm2, and
(b) one wide heel of area 16 cm2, area
*The person wearing the shoes has a mass
of 56 kg.

Answers

The pressure exerted by the pointed heel is approximately 12,195,555.56 Pa. The pressure exerted by the wide heel is 343,000 Pa.

(a) To estimate the pressure exerted by a pointed heel, we can use the formula:

Pressure = Force / Area

The force exerted by the heel can be calculated using the weight of the person wearing the shoes, which is equal to the mass multiplied by the acceleration due to gravity:

Force = mass * acceleration due to gravity

Area of the pointed heel (A) = 0.45 cm²

Mass of the person (m) = 56 kg

Acceleration due to gravity (g) = 9.8 m/s²

Converting the area from cm² to m²:

A = 0.45 cm² * (1 m / 100 cm)² = 0.000045 m²

Calculating the force:

Force = 56 kg * 9.8 m/s² = 548.8 N

Calculating the pressure:

Pressure = Force / Area = 548.8 N / 0.000045 m² ≈ 12,195,555.56 Pa

(b) To estimate the pressure exerted by a wide heel, we use the same formula:

Pressure = Force / Area

Area of the wide heel (A) = 16 cm² = 0.0016 m²

Calculating the force:

Force = 56 kg * 9.8 m/s² = 548.8 N

Calculating the pressure:

Pressure = Force / Area = 548.8 N / 0.0016 m² = 343,000 Pa

Learn more about pressure:

https://brainly.com/question/28012687

#SPJ11

On a test of 80 items, Pedro got 93% correct. (There was partial credit on some items.) How many items did he get correct? incorrect? Pedro got items correct (Type a whole number or decimal rounded to two decimal places as needed.)

Answers

Pedro got approximately 74 items correct and 6 items incorrect on the test of 80 items, based on his 93% accuracy.

To determine the number of items Pedro got correct and incorrect, we can use the percentage of correct answers and the total number of items.

Given that Pedro got 93% accuracy of the items correct on a test with 80 items, we can calculate the number of correct items as follows:

Number of correct items = (Percentage of correct answers / 100) * Total number of items

Number of correct items = (93 / 100) * 80 = 74.4

Therefore, Pedro got approximately 74.4 items correct.

To find the number of incorrect items, we can subtract the number of correct items from the total number of items:

Number of incorrect items = Total number of items - Number of correct items

Number of incorrect items = 80 - 74.4 = 5.6

Therefore, Pedro got approximately 5.6 items incorrect.

Please note that since the total number of items is a whole number, the number of correct and incorrect items cannot be in decimal form. In this case, we would consider Pedro got 74 items correct and 6 items incorrect, rounding up for the number of incorrect items.

Learn more about accuracy:

https://brainly.com/question/1695072

#SPJ11

The best type of lighting to use in a geriatric medical office is _______ lighting.

Answers

The best type of lighting to use in a geriatric medical office is natural or daylight-like lighting.

Natural or daylight-like lighting is considered the best choice for a geriatric medical office. It closely mimics the natural light conditions found outdoors, providing a balanced spectrum of light that is beneficial for both patients and healthcare professionals.

Natural lighting has several advantages. First, it enhances visual acuity and reduces eye strain, which is particularly important for elderly patients who may have age-related vision changes. Second, it helps regulate circadian rhythms and improve sleep-wake cycles, which can positively impact overall well-being and mood. Third, natural lighting creates a more pleasant and calming environment, potentially reducing stress and anxiety for patients.

To maximize natural lighting, large windows or skylights can be incorporated into the design of the medical office. In areas where natural light is limited, artificial lighting systems that closely resemble daylight can be installed, such as full-spectrum LED lights. These lights emit a broad spectrum of colors similar to natural sunlight, promoting a more comfortable and soothing atmosphere within the geriatric medical office.

To learn more about lighting click here

https://brainly.com/question/31064438

#SPJ11

A particular star is d 76.1 light-years (ly) away, with a power output of P 4.40 x 1026 W. Note that one light-year is the distance traveled by the light through a vacuum in one year. (a) Calculate the intensity of the emitted light at distance d (in nW/m2) nW/m2 (b) What is the power of the emitted light intercepted by the Earth (in kW)? (The radius of Earth is 6.37 x 10° m.) kW What If? Of the more than 150 stars within 20 light-years of Earth, 90 are very dim red dwarf stars each with an average luminosity of 2.00 x 1025 w, about 5% the luminosity of the sun. If the average distance of these objects from the Earth is 10.0 ly, find the following. (c) the ratio of the total intensity of starlight from these 90 stars to the intensity of the single bright star found in part (a) "dwarf stars Isingle star (d) the ratio of the total power the Earth intercepts from these stars to the power intercepted from the bright star in part (b) dwarf stars P. single star

Answers

The intensity of the emitted light at distance d (in nW/m²) from a star that is d 76.1 light-years (ly) away, with a power output of P 4.40 x 10²⁶ W is 3.51 x 10⁻¹⁴ nW/m².

The formula for calculating the intensity of the light is given by:

I = P/4πd²

Where,
I = intensity of light,
P = power output of the star
d = distance between the star and the observer

Substituting the values, we get:

I = (4.40 x 10²⁶ W)/(4π x (76.1 ly x 9.46 x 10¹² m/ly)²)

We convert 76.1 light-years to meters by multiplying it by the conversion factor of 9.46 x 10¹² m/ly.

I = (4.40 x 10²⁶ W)/(4π x (76.1 ly x 9.46 x 10¹² m/ly)²)
I = (4.40 x 10²⁶ W)/(4π x 6.784 x 10³⁴ m²)
I = 3.51 x 10⁻¹⁴ nW/m² (rounded to two significant figures)

To know more about power output refer to:

https://brainly.com/question/20038729

#SPJ11

An air-track glider attached to a spring oscillates between the
10 cm mark and the 60 cm mark on the track. The glider com­pletes 10 oscillations in 33 s. What are the (a) period. (b) frequency,
(c) angular frequency.(d) amplitude. and (c) maximum speed of
the glider

Answers

(a) The period of the glider's oscillation is 3.3 seconds. ,(b) The frequency of the glider's oscillation is 0.303 Hz. ,(c) The angular frequency of the glider's oscillation is 1.905 rad/s. ,(d) The amplitude of the glider's oscillation is 25 cm. ,(e) The maximum speed of the glider is 0.477 m/s.

(a) To find the period, we divide the total time by the number of oscillations: Period = Total time / Number of oscillations = 33 s / 10 = 3.3 s.

(b) The frequency is the reciprocal of the period: Frequency = 1 / Period

= 1 / 3.3 s

≈ 0.303 Hz.

(c) The angular frequency is the product of 2π and the frequency: Angular frequency = 2π × Frequency

= 2π × 0.303 Hz

≈ 1.905 rad/s.

(d) The amplitude is half the difference between the maximum and minimum positions: Amplitude = (60 cm - 10 cm) / 2

= 25 cm.

(e) The maximum speed occurs when the glider passes through the equilibrium position. The maximum speed can be calculated by multiplying the amplitude by the angular frequency:

Maximum speed = Amplitude × Angular frequency

= 0.25 m × 1.905 rad/s

≈ 0.477 m/s.

The glider's oscillation has a period of 3.3 seconds, a frequency of 0.303 Hz, an angular frequency of 1.905 rad/s, an amplitude of 25 cm, and a maximum speed of 0.477 m/s. These values describe the motion of the glider as it oscillates between the 10 cm and 60 cm marks on the air-track.

To know more about oscillation ,visit:

https://brainly.com/question/22499336

#SPJ11

Blood is flowing through an artery of radius 8 mm at a rate of 49 cm/s. Determine the flow rate and the volume that passes through the artery in a period of 40 s.
flow rate _cm3/s
volume _cm3

Answers

1. The flow rate through the artery is approximately 98.49  [tex]cm^{3}[/tex]/s.

2. The volume that passes through the artery in a period of 40 s is approximately 3939.6 [tex]cm^{3}[/tex].

1. To determine the flow rate and volume that passes through the artery, we can use the formula for flow rate

Flow rate = Area × Velocity

First, let's calculate the area of the artery

Area = π × [tex](radius)^{2}[/tex]

Radius = 8 mm = 0.8 cm

Area = π × [tex](0.8 cm)^{2}[/tex] = 2.01 [tex]cm^{2}[/tex]

Next, we can calculate the flow rate:

Flow rate = Area × Velocity

Flow rate = 2.01  [tex]cm^{2}[/tex] × 49 cm/s = 98.49 [tex]cm^{3}[/tex]/s

Therefore, the flow rate through the artery is approximately 98.49 [tex]cm^{3}[/tex]/s.

2. To find the volume that passes through the artery in a period of 40 s, we can multiply the flow rate by the time:

Volume = Flow rate × Time

Volume = 98.49  [tex]cm^{3}[/tex]/s × 40 s = 3939.6  [tex]cm^{3}[/tex].

Therefore, the volume that passes through the artery in a period of 40 s is approximately 3939.6  [tex]cm^{3}[/tex].

To know more about flow rate here

https://brainly.com/question/29348786

#SPJ4

A ball is tossed straight up and later returns to the point trom which it was launched the ball is subject to ar resistance as well as gravity, which of the following statements is correct The speed at which the ball returns to the point of launch is less than its speed when it was initially launched The time for the ball to fall is the same as the time for the ball to rise The force of air resistance is directed downward botly when the ball istising and when it is falling The net work done by air resistance on the ball during its flight is zero E The net work done by gravity on the ball during its fight is greater than zero

Answers

The correct statement is: The force of air resistance is directed downward both when the ball is rising and when it is falling. When a ball is tossed straight up and later returns to its point of launch, it experiences the force of gravity pulling it downward throughout its entire trajectory.

Additionally, air resistance acts on the ball in the opposite direction of its motion, regardless of whether it is rising or falling. This means that the force of air resistance is directed downward both when the ball is rising and when it is falling. The other statements are not necessarily correct: The speed at which the ball returns to the point of launch may or may not be less than its speed when initially launched, depending on factors such as air resistance and the efficiency of energy conversion. The time for the ball to fall is generally longer than the time for the ball to rise due to the influence of air resistance. The net work done by air resistance on the ball during its flight is not zero, as air resistance opposes the ball's motion and dissipates some of its energy. The net work done by gravity on the ball during its flight depends on the trajectory and the change in potential energy. In some cases, it may be zero or negative, depending on the direction of motion.

To learn more about force, https://brainly.com/question/30507236

#SPJ11

a 1 octahedral complex is found to absorb visible light, with the absorption maximum occurring at 523 nm . calculate the crystal-field splitting energy, δ , in kj/mol.

Answers

The crystal-field splitting energy Δ for the d1 octahedral complex is approximately 6.34 kJ/mol.

To calculate the crystal-field splitting energy (Δ) in kJ/mol for a d1 octahedral complex, we can use the relationship between the absorption wavelength and Δ given by the formula:

Δ = hc / λ

where:

Δ is the crystal-field splitting energy,

h is the Planck's constant (6.626 × [tex]10^{-34[/tex] J·s),

c is the speed of light (2.998 × [tex]10^{8[/tex] m/s), and

λ is the absorption wavelength in meters.

First, we need to convert the absorption wavelength from nanometers (nm) to meters (m):

λ = 523 nm = 523 × [tex]10^{-9[/tex] m

Now, we can calculate Δ:

Δ = (6.626 × [tex]10^{-34[/tex] J·s × 2.998 × [tex]10^8[/tex] m/s) / (523 × [tex]10^{-9[/tex] m)

Δ = 3.819 × [tex]10^{-19[/tex] J

To convert Δ from joules to kJ/mol, we need to divide by Avogadro's number (6.022 × [tex]10^{23[/tex] [tex]mol^{-1[/tex]) and multiply by [tex]10^{-3[/tex]:

Δ = (3.819 × [tex]10^{-19[/tex] J / 6.022 × [tex]10^{23[/tex] [tex]mol^{-1[/tex]) × [tex]10^{-3[/tex] kJ/mol

Δ ≈ 6.34 kJ/mol

Learn more about the octahedral complex at

https://brainly.com/question/17204989

#SPJ4

The question is -

A d1 octahedral complex is found to absorb visible light, with the absorption maximum occurring at 523 nm. Calculate the crystal-field splitting energy, Δ, in kJ/mol.

mass of the objects is 5.00 kg, what is the mass of each.
two objects attract each other with a gravitational force of magnitude 1.00 X 10^-8 N when seperated by 20.0 cm. If the total mass of the objects is 5.00 kg, what is the mass of each.

Answers

The mass of each object is 2.50 kg.

According to the given statement, the objects attract each other with a gravitational force of magnitude 1.00 X 10^-8 N when separated by 20.0 cm. We have to calculate the mass of each object. We know that the force of gravity between two objects depends on the masses of the objects and the distance between them. Therefore, we can use the formula: F = G × (m1 × m2) / r^2where F is the force of gravity, G is the gravitational constant, m1 and m2 are the masses of the two objects, and r is the distance between them.

In this case, F = 1.00 X 10^-8 N, G = 6.67 × 10^-11 Nm^2/kg^2, r = 20.0 cm = 0.20 m, and m1 + m2 = 5.00 kg. We can use these values to solve for m1 and m2 as follows: F = G × (m1 × m2) / r^2=> 1.00 X 10^-8 N = 6.67 × 10^-11 Nm^2/kg^2 × (m1 × m2) / (0.20 m)^2=> (m1 × m2) / (0.20 m)^2 = 1.00 X 10^-8 N / (6.67 × 10^-11 Nm^2/kg^2)=> (m1 × m2) / 0.04 m^2 = 1.50 kg^2=> m1 × m2 = 0.06 kg^2Also, m1 + m2 = 5.00 kg From the above two equations, we can solve for m1 and m2 as follows:m2 = 5.00 kg - m1=> m1 × (5.00 kg - m1) = 0.06 kg^2=> 5.00 m1 - m1^2 = 0.06=> m1^2 - 5.00 m1 + 0.06 = 0Using the quadratic formula, we get:m1 = 0.012 kg or 4.988 kg We can reject the negative value and take the positive value, which gives:m1 = 0.012 kg and m2 = 4.988 kg Therefore, the mass of each object is 2.50 kg

Know more about mass, here:

https://brainly.com/question/11954533

#SPJ11

A car accelerates from rest to 30 km/h. Later, on a highway it accelerates from 30 km/h to 60 km/h. Which takes more energy, going from 0 to 30, or from 30 to 60?

Answers

A car going from 30 km/h to 60 km/h takes more energy than going from 0 km/h to 30 km/h.

The kinetic energy of a moving object is a function of its mass and velocity.

If an object is moving faster, it will have more kinetic energy than if it is moving slower.

Therefore, an object moving from 0 to 30 km/h will have less kinetic energy than an object moving from 30 to 60 km/h.

Since kinetic energy is a function of velocity, it is the change in velocity that determines the change in kinetic energy. Therefore, going from 30 km/h to 60 km/h takes more energy than going from 0 km/h to 30 km/h.

Learn more about the energy:

brainly.com/question/13881533

#SPJ11

a) Use the van der Waals equation of state to calculate the pressure of 3.20 mol of hcl at 499 K in a 4.90-L vessel.
b) Use the ideal gas equation to calculate the pressure under the same conditions.

Answers

The pressure of 3.20 mol of HCl in a 4.90-L vessel is approximately 22.4 atm when calculated using the van der Waals equation of state and approximately 24.4 atm when calculated using the ideal gas equation.

a) The pressure of 3.20 mol of HCl at 499 K in a 4.90-L vessel, calculated using the van der Waals equation of state, is approximately 22.4 atm.

The van der Waals equation of state accounts for the deviations of real gases from ideal behavior, taking into consideration intermolecular forces and the finite volume occupied by gas molecules. The equation is given by:

(P + a(n/V)^2)(V - nb) = nRT

Where:

P is the pressure

a and b are the van der Waals constants specific to the gas

n is the number of moles

V is the volume

R is the ideal gas constant

T is the temperature

For HCl gas, the van der Waals constants are:

a = 6.49 L^2 atm/mol^2

b = 0.0562 L/mol

Plugging in the values:

n = 3.20 mol

V = 4.90 L

R = 0.0821 L·atm/(mol·K)

T = 499 K

Using the van der Waals equation and solving for P:

(P + (6.49 L^2 atm/mol^2)(3.20 mol / (4.90 L))^2)(4.90 L - (0.0562 L/mol)(3.20 mol)) = (3.20 mol)(0.0821 L·atm/(mol·K))(499 K)

P ≈ 22.4 atm

b) The pressure calculated using the ideal gas equation under the same conditions is approximately 24.4 atm.

Explanation and calculation:

The ideal gas equation is given by:

PV = nRT

Using the same values as before:

n = 3.20 mol

V = 4.90 L

R = 0.0821 L·atm/(mol·K)

T = 499 K

Solving for P:

P = (3.20 mol)(0.0821 L·atm/(mol·K))(499 K) / 4.90 L

P ≈ 24.4 atm

Under the given conditions, the pressure of 3.20 mol of HCl in a 4.90-L vessel is approximately 22.4 atm when calculated using the van der Waals equation of state and approximately 24.4 atm when calculated using the ideal gas equation. The van der Waals equation accounts for intermolecular forces and the finite volume of the gas, resulting in a slightly lower pressure compared to the ideal gas equation, which assumes ideal behavior.

To know more pressure visit:

brainly.com/question/30482677

#SPJ11

.An aluminum tea kettle with mass 1.30 kgkg and containing 1.90 kgkg of water is placed on a stove.
Part A
If no heat is lost to the surroundings, how much heat must be added to raise the temperature from 19.0 ∘C∘C to 82.0 ∘C∘C?

Answers

The amount of heat that must be added to raise the temperature of the aluminum tea kettle and water from 19.0°C to 82.0°C, assuming no heat loss to the surroundings, is approximately 219,426 J (joules).

To calculate the amount of heat required, we can use the specific heat capacity formula:

Q = mcΔT

Where:

Q = Heat energy (in joules)

m = Mass (in kilograms)

c = Specific heat capacity (in joules per kilogram per degree Celsius)

ΔT = Change in temperature (in degrees Celsius)

First, let's calculate the heat required to raise the temperature of the aluminum tea kettle.

The specific heat capacity of aluminum is approximately 900 J/kg°C:

Q_aluminum = (mass_aluminum) x (specific heat capacity_aluminum) x (change in temperature)

          = 1.30 kg x 900 J/kg°C x (82.0°C - 19.0°C)

          = 1.30 kg x 900 J/kg°C x 63.0°C

          ≈ 87,210 J

Next, let's calculate the heat required to raise the temperature of the water. The specific heat capacity of water is approximately 4186 J/kg°C:

Q_water = (mass_water) x (specific heat capacity_water) x (change in temperature)

       = 1.90 kg x 4186 J/kg°C x (82.0°C - 19.0°C)

       = 1.90 kg x 4186 J/kg°C x 63.0°C

       ≈ 231,216 J

Finally, we add up the heat required for both the aluminum tea kettle and the water:

Total heat required = Q_aluminum + Q_water

                                  = 87,210 J + 231,216 J

 Total heat required  ≈ 318,426 J

The amount of heat that must be added to raise the temperature of the aluminum tea kettle and water from 19.0°C to 82.0°C, assuming no heat loss to the surroundings, is approximately 219,426 J (joules).

To know more about heat visit:

https://brainly.com/question/25603269

#SPJ11

A transformer for a laptop computer converts a 220-V input to a 10-V output. Write down the equations that show that the primary coil has twenty two times as many turns as the secondary coil.

Answers

The transformer operates based on the principle of electromagnetic induction this equation shows that the primary coil has twenty-two times as many turns as the secondary coil.

Let's denote the number of turns in the primary coil as Np and the number of turns in the secondary coil as Ns.

The transformer operates based on the principle of electromagnetic induction, which states that the ratio of the number of turns in the primary coil to the number of turns in the secondary coil is equal to the ratio of the input voltage to the output voltage. Mathematically, this can be expressed as:

Np / Ns = Vin / Vout

In this case, the input voltage (Vin) is 220 V and the output voltage (Vout) is 10 V. Substituting these values into the equation, we get:

Np / Ns = 220 / 10

Simplifying further:

Np / Ns = 22

This equation shows that the primary coil has 22 times as many turns as the secondary coil.

Here you can learn more about electromagnetic induction

https://brainly.com/question/32444953#

#SPJ11

Other Questions
b. Mr.Jack has BD.500, he can either go for a trip, pay university fees or purchase a laptop. Mr.Jack decides his first choice is to pay university fees, second choice is to purchase a laptop and third choice is to go for a trip. He decides to pay university fees. What is the opportunity cost of his decision? (2 marks) "Suppose X is normally distributed with a mean of u = 12 and a standard deviation of g = 1.4. Find the z-score corresponding to x = 15.5. Show your work." James is an agreeable and emotionally stable person. A _________, he inspires his employees to believe in the changes he wants to make to the organization. View Policies Current Attempt in Progress Crane Company made the following journal entry in late 2021 for rent on property it leases to Danford Corporation. Cash Unearned Rent Revenue $266250 O $11725 Security Technology Incorporated (STI) is a manufacturer of an electronic control system used in the manufacture of certain special- duty auto transmissions used primarily for police and military applications. The part sells for $43 per unit and STI had sales of 24,700 units in the current year, 2021. STI had no inventory on hand at the beginning of 2021 and is projecting sales of 28,100 units in 2022. STI is planning the same production level for 2022 as in 2021, 26,400 units. The variable manufacturing costs for STI are $14, and the variable selling costs are only $0.50 per unit. The fixed manufacturing costs are $211,200 per year, and the fixed selling costs are $640 per year. Required: 1. Prepare an income statement for each year usingfull costing. 2. Prepare an income statement for each year using variable costing. 3. Prepare a reconciliation of the difference each year in the operating income resulting from the full and variable costing methods. Investment decision making traditionally consists of two steps: investment banking and security analysis buying and selling risk and expected return security analysis and portfolio management On April 2, a corporation purchased for cash 7,000 shares of its own $12 par common stock at $29 a share. It sold 4,000 of the treasury shares at $32 a share on June 10, The remaining 3,000 shares were sand on November 10 for $25 a share. a. Journalize the entries to record the purchase (treasury stock is recorded at cost). If an amount box does not require an entry, leave it blank Apr. 2 b. Journalize the entries to record the sale of the stock. If an amount box does not require an entry, leave it blank Jun, 10 Nov. 10 T/F In the human heart, the muscular structure of the ventricles enables them to pump blood a greater distance than atria can find the area of the trapezoid 2.4cm 3.5cm 4.6cm Arrange the following in order of increasing radius: O2-, F- , Ne ,Rb+ ,Br- Rb+ < F- < Br- < O2- < Ne Br- < Rb+ < Ne < F- < O2- Ne < F- < O2- < Rb+ < Br- O2- < F- < Ne < Rb+ < Br- O2- < Br- < F- < Ne < Rb + Br- < F- < O2- < Ne < Rb+ F- < O2- < Ne < Br- < Rb + Rb+ < F- < Br- < Ne State laws that govern corporations: a) require that corporations solely maximize shareholder wealth. b) require managers to adopt a "greed is good" approach to corporate social responsibility. c) do not require managers to adopt a narrow view of corporate social responsibility. d) require managers to ignore corporate social responsibility. e) allow for taking multiple stakeholders into account. 8. Elements bond to make minerals or "chemical compounds". Describe in your own words the differences between the ionic, covalent, metallic and van der waal bonds. a. Relationship questions: 1. What common bonding characteristic is common to all 4 bonds? 2. Given each bonding type, identify which type of bonds are strong, weak, moderate, ect..... Which bonds would allow the mineral to scratch glass, peel apart express malleability and produce very soft type minerals? 3. 4. How does the type of mineral bond relate to mineral physical properties? jenny is a freshman in college who needs to declare her major. she is interested in history, psychology, medicine, and law. as she thinks about each of these potential majors, she considers both the positive and negative aspects of each, which cause her to go back and forth in her decision. jenny is experiencing a(n) conflict. and peter wants to go to law school because he believes being a lawyer will bring him prestige and a good income. however, he is not sure he should attend because he is very concerned about the hard work law school will involve and the money it will cost. peter is faced with a(n) conflict. A company has an average inventory on hand of 80,000,000 and the days in inventory is 73 days. What is the cost of goods sold? engorgement and elevation of the testes becomes more pronounced during which phase? Why gasoline follows oil up but not downIf it seems like gasoline prices are quick to skyrocket when the price of all goes up, but then take these coming back down when crude prices sink, the angle Thiry t "There is a rockat and feather aspect Service stations are sling the same amount of gasoline when wholesale prices fat, so there's ne reson to dep the pics Servin typically pro pushing prices higher, even before they replace their inventories. Eventually, the market steps in and prices start to fall an nearby statens roduce theirComplete the following sentencesGasoline______ supply, so an increase in demand increases the price of a gallon of gasoline by a relatively_____ amountA. elastic smallB. inelastic largeC. elastic largeD. inelastic, small Which of the following statements concerning audit evidence is correct? Multiple Choice Appropriate evidence supporting management's assertions should be convincing rather than persuasive. The cost of On December 31, 2018, when the market interest rate is 12%, Lee Realty issues $500,000 of 9.25%, 10-year bonds payable. The bonds pay interest semiannually. Determine the present value of the bonds at issuance. arrange the acting skills of the actors like shahrukh, salman , aamir, ranveer singh, ranveer kapoor, ajay devgan, hritik roshan, akshay kumar? Solve the recurrence relation an = 4an1 + 4an2 with initial terms a0 =1 and a1 =2.